PIRLS  
 
search

ENME    PIRLS




Professor S.K. Gupta (ME/ISR) is the principal investigator for a new National Science Foundation CDI-Type 1 grant, High-Performance Simulations and Interactive Visualization for Automated Nanoscale Assembly. The three-year, $550K grant will develop a fundamental understanding of the interaction of nanocomponents with trapping fields. Amitabh Varshney (CS) is the co-PI.

Assembling nanoscale components to make functional devices remains a grand challenge despite rapid advances in imaging, measurement, and fabrication at the nanoscale.

While manipulation techniques for nanocomponents are finally emerging, they currently lack automation. This seriously limits the rate at which new nanocomponent-based devices can be invented. Developing an understanding of the interaction of nanocomponents with trapping fields will aid the development of automated real-time planning algorithms.

Understanding different ways in which components can interact with the trap requires dense sampling of the planning parameter space using millions of computationally intensive simulation runs. The research will develop a GPU-based simulation infrastructure for simulating trap and nanocomponent interactions. In addition, algorithms for automatically constructing simplified assembly process models from simulation data will be developed. The researchers will develop visualization tools for enhancing the understanding of the nanoscale assembly processes, and identify and characterize real-time motion planning strategies for nanoscale assembly processes.

The research will lead to a reliable, efficient, and automated assembly process for fabricating nanocomponent-based devices. This assembly process will enable nanotechnology researchers to explore new design possibilities in nano electronics, nano photonics, and bio-inspired sensors. Automated assembly capability will also allow the cost-effective exploration of a large number of design options, accelerating discovery and invention. This should reduce the need for manual assembly operations and will make nanomanipulation significantly less labor-intensive, making the manufacturing of nanodevices more cost-competitive.

September 18, 2008


«Previous Story  

 

 

Current Headlines

Mechanical Engineering at ASME IMECE Conference

ME Alumni Awarded Clark School Early Career Award

ME Alumni Awarded Clark School Glenn L. Martin Medal

ME Professors Featured on IBM Business of Government Podcast

UMD Solar Decathlon Team Takes 1st Place in the U.S., 2nd Place in the World

Catalini and Leininger win 2017 GDF-Suez Chuck Edwards Memorial Fellowships

UMD Researchers Work to Mitigate Water Scarcity Crisis with Solar-Powered Devices Made of Wood

Graduate Student Panelist at International Student Event

University of Maryland School of Engineering Announces Unprecedented Investment from A. James & Alice B. Clark Foundation

Empowering Voices in Engineering

 
 
Back to top  
PIRLS Home Clark School Home UMD Home ENME Home